Enzymes in jasmonate biosynthesis - structure, function, regulation.
نویسندگان
چکیده
Jasmonates are a growing class of lipid-derived signaling molecules with diverse functions ranging from the initiation of biotic and abiotic stress responses to the regulation of plant growth and development. Jasmonate biosynthesis originates from polyunsaturated fatty acids in chloroplast membranes. In a first lipoxygenase-catalyzed reaction molecular oxygen is introduced to yield their 13-hydroperoxy derivatives. These fatty acid hydroperoxides are converted by allene oxide synthase and allene oxide cyclase to 12-oxophytodienoic acid (OPDA) and dinor-OPDA, i.e. the first cyclic intermediates of the pathway. In the subsequent step, the characteristic cyclopentanone ring structure of jasmonates is established by OPDA reductase. Until recently, jasmonic acid has been viewed as the end product of the pathway and as the bioactive hormone. It becomes increasingly clear, however, that biological activity extends to and may even differ between the various jasmonic acid metabolites and conjugates as well as its biosynthetic precursors. It has also become clear that oxygenated fatty acids give rise to a vast variety of bioactive compounds including but not limited to jasmonates. Recent insights into the structure, function, and regulation of the enzymes involved in jasmonate biosynthesis help to explain how this variety is generated while specificity is maintained.
منابع مشابه
Biosynthesis and Action of Jasmonates in Plants.
Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from lin...
متن کاملTobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway.
The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicot...
متن کاملMethyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions.
Vitamin C (L-ascorbic acid) is an important primary metabolite of plants that functions as an antioxidant, an enzyme cofactor, and a cell-signalling modulator in a wide array of crucial physiological processes, including biosynthesis of the cell wall, secondary metabolites and phytohormones, stress resistance, photoprotection, cell division, and growth. Plants synthesize ascorbic acid via de no...
متن کاملJasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes.
Biosynthesis of many plant alkaloids is enhanced by endogenous accumulation and exogenous application of jasmonates, but the general and specific signaling components are not well understood. In Arabidopsis, jasmonate-induced ZIM-domain-containing (JAZ) proteins have recently been found to be critical transcriptional repressors linking CORONATINE INSENSTIVE1 (COI1)-mediated jasmonate perception...
متن کاملInfluence of Methyl Jasmonate on Menthol Production and Gene Expression in Peppermint (Mentha x piperita L.)
Peppermint has considerable commercial value and widely cultivated for essential oil production, especially menthol. The aim of this study was to determine the quantitative expression of pulegone reductase (pr), menthofuran synthase (mfs) and limonene synthase (ls) genes in menthol biosynthesis pathway in Mentha x piperita , using semiquantitative RT-PCR analysis and evaluating menthol producti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 70 13-14 شماره
صفحات -
تاریخ انتشار 2009